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Abstract 
We present a new method to rapidly adapt the models of a 
statistical synthesizer to the voice of a new speaker. We apply 
a relatively simple linear transform that consists of a vocal 
tract length normalization (VTLN) part and a long-term 
average cepstral correction part. Despite the logical limitations 
of this approach, we will show that it effectively reduces the 
gap between source and target voices with only one reference 
utterance and without phonetic segmentation. In addition, by 
using a minimum generation error criterion we avoid some of 
the problems that have been reported to arise when using a 
maximum likelihood criterion in VTLN. 
Index Terms: statistical parametric speech synthesis, speaker 
adaptation, vocal tract length normalization 

1. Introduction 
The length of the vocal tract is one of the perceptually relevant 
characteristics of a speaker’s voice, being known to correlate 
well with gender and/or age. Therefore, VTLN techniques are 
useful to make speech processing systems able to operate with 
a wide variety of voices. VTLN has been traditionally applied 
to compensate for vocal tract length mismatches between the 
pre-trained statistical models and the input voices in automatic 
speech recognition (ASR) [1]. Thus, the word error rate is 
reduced by 7-10% with respect to an equivalent nonadaptive 
ASR system. 

From the speech generation side, VTLN has also been 
applied in voice conversion [2] and more recently in speaker-
adaptive synthesis [3] to mimic the characteristics of specific 
target speakers. Frequency warping functions are used to 
transfer the vocal tract length of the target speaker to the 
generated speech by modifying either the signal (conversion) 
or the generative models (synthesis). In this context, VTLN 
has two main advantages with respect to other types of 
transformation: (i) the almost null degradation of the quality; 
(ii) the robustness of the method when few training data are 
available, which is due to the generally low dimension of the 
transformation function. These two advantages are often 
sufficient to justify the use of VTLN in speech generation 
even though the similarity between frequency-warped and 
target voices is obviously moderate. 

In the particular case of speech synthesis based on hidden 
Markov models (HMMs), an extensive study was presented in 
[3] in which the main challenges arising when integrating 
VTLN in this framework were analyzed. Choosing the popular 
all-pass transform based on a bilinear function as basic 
frequency warping curve with only one parameter [4], several 
model adaptation strategies based on maximum likelihood 
(ML) criteria were examined. We would like to highlight some 
observations from the work presented in [3]: (a) the high 
dimension of the Mel-cepstral vectors typically used in 

synthesis hinders the adaptation process driven by likelihoods; 
(b) special attention has to be paid to Jacobian normalization 
during adaptation to avoid unstabilities; (c) during adaptation, 
a numerical algorithm is necessary to search for the maximum 
of an auxiliary function at each iteration of the expectation-
maximization algorithm, which results in a doubly iterative 
procedure. 

In our previous works on voice conversion, we showed the 
usefulness of the so called BLFW+AS (bilinear frequency 
warping plus amplitude scaling) method [5]. Fed with Mel-
cepstral vectors, this method uses a GMM to partition the 
acoustic vector space of the source speaker into overlapping 
classes, each class being assigned specific frequency warping 
and amplitude scaling functions. Like the aforementioned 
VTLN-based speaker adaptation method, BLFW+AS uses 
bilinear frequency warping functions with one single 
parameter. It also uses additive cepstral terms as amplitude 
scaling functions that compensate for the differences between 
frequency-warped and target spectra. This paper reports the 
preliminary steps towards the design of a rapid speaker 
adaptation method inspired by BLFW+AS in the context of 
statistical parametric speech synthesis. 

Interestingly, although BLFW+AS was designed to 
operate with multiple overlapping classes, the objective scores 
presented in [5] (and also those in [3]) suggested that a single 
frequency warping function followed by many class-
dependent amplitude scaling terms performed almost equally 
well. Therefore, in order to facilitate the design of a 
BLFW+AS-based adaptation method, in this preliminary 
approach we have considered only the basic case with a 
unique transformation class, which means using the same 
transform in all the acoustic and phonetic contexts. This 
simplified method can be seen as VTLN followed by a sort of 
long-term average cepstral correction. In this document, 
emphasis will be placed on the estimation of the VTLN factor. 
Future extensions of this work will consider the use of many 
class-dependent amplitude scaling additive cepstral terms. 

Regarding the estimation of the VTLN factor, the method 
we propose exhibits some remarkable differences with respect 
to the one described in [3]: (a) our method can deal with high-
dimensional Mel-cesptral vectors because it is not based on 
ML criteria but on a different criterion similar to minimum 
generation error (MGE) [6]; (b) for the same reason, the 
Jacobian normalization related problem reported in [3] is 
avoided; (c) our solution is based on the iterative VTLN 
training algorithm presented in [7], which converges very 
rapidly and consistently with no irregular behaviors. 

The remainder of this paper is structured as follows. 
Section 2 summarizes the algorithm that allows calculating a 
VTLN factor from two parallel sets of cepstral vectors. Then, 
for a better understanding of the MGE-based method we 
propose, section 3 will give a brief overview of standard 
parameter generation techniques used in HMM-based speech 
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synthesis. In sections 4 and 5 we will describe and evaluate the 
proposed method assuming one single recorded utterance for 
adaptation and its corresponding text. 

2. Iterative estimation of VTLN factor 
from aligned vectors 

All-pass transforms based on bilinear functions are one of the 
most popular choices in VTLN [8][4]. This section gives an 
introduction to this particular type of frequency warping 
function and shows how the optimal value of its unique 
parameter can be learnt from a set of aligned source and target 
vectors, {xt} and {yt}. Bilinear functions can be defined in the 
z domain in terms of one single parameter α: 
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The corresponding mapping between the original frequency 
scale and the warped one is given by 
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Previous research has shown that, given the VTLN factor 
α, the cepstral representation of a spectrum, x, can be 
transformed into that of the corresponding frequency-warped 
spectrum, x(α). This cepstral transformation can be expressed 
as a linear operation [4][9]: 
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Given the strongly nonlinear dependence between Aα and α, it 
is difficult to estimate the best value of α from aligned source 
and target training data. However, since |α| << 1 when VTLN 
is performed on realistic human voices (in general, |α| < 0.1), 
one can think of simplifying Aα by neglecting the terms of the 
form αn for n > 1, as originally proposed in [10]. This results 
in a more manageable transformation: 
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where d(x) is the vector whose ith element is given by 
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Under the assumption that (4) is accurate enough, given a set 
of T source and target parallel training vectors, {xt} and {yt}, it 
can be shown [7] that the VTLN factor than minimizes the 
error between warped and target vectors is 
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In our previous works [7][5] we found expression (4) to be 
inaccurate for many voices, especially in cross-gender 
transformation (which is the case where accurate VTLN is 
most neeeded). Therefore, we proposed the following iterative 
algorithm to get the minimum-error value of α according to 
the full formulation (3): 

- Step 1: initialize α as 0. 
- Step 2: for the current α, calculate a set of warped vectors 

{xn
(α)}, xn

(α) = Aαxn, where the warping matrix Aα is given 
by expression (3). 

- Step 3: calculate the incremental warping factor Δα that is 
necessary to make the vectors {xn

(α)} closer to the target 
vectors {yn}. This is done by solving the approximate 
expression (6) for {xn

(α)} instead of {xn}. 
- Step 4: accumulate Δα into the current α. This can be done 

via the following expression [8]: 
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- Step 5: if the last update of α was insignificant (in other 
words, if |Δα| was lower than a threshold), exit. Otherwise, 
go back to step 2. 

3. ML parameter generation from HMMs 
For a better understanding of the method to be proposed next, 
this section explains briefly how the speech parameter 
generation algorithm of a standard statistical synthesizer 
[11][12] works. Although usually referred to as HMM-based 
synthesis, statistical parametric speech synthesis is actually 
based on context dependent hidden semi Markov models (CD-
HSMMs), where the duration of each state is explicitly 
modeled through normal distributions instead of depending on 
state transition probabilities. During training, CD-HSMMs are 
used to model the correspondence between the phonetic, 
linguistic and prosodic context labels and the observed 
acoustic parameters (together with their 1st and 2nd-order 
derivatives over time). During synthesis, once the context 
labels are extracted from the input text, the system’s engine 
determines the sequence of CD-HSMM states that corresponds 
to that text and also the duration of each state (either using 
statistics or specifications by the user). Let us refer to the state 
index at frame t as mt. The goal is finding the most probable 
sequence of acoustic vectors {yt}t = 1…T given the sequence of 
mean vectors {μmt}t = 1…T and covariance matrices {Σmt}t = 1…T. 
To make the problem mathematically tractable, the output 
sequence is expressed as a supervector: 
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Defining W as the matrix that appends dynamic features to the 
vectors in y and omitting the derivation (interested readers 
should refer to [11][12] for details), the most probable y is 
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where 
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and D is a block-diagonal matrix given by 
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Although the synthesis engine of modern synthesizers 
includes a global variance enhancement algorithm [13], this is 
not crucial for our MGE-based adaptation method to perform 
correctly. 
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4. Adaptation based on MGE criterion 
The algorithms shown in the previous sections provide the 
necessary tools to build a MGE-based VTLN method in the 
context of statistical parametric speech synthesis. The idea is 
(i) to generate a synthetic copy of the utterances available for 
adaptation and then (ii) to calculate the VTLN factor α that 
produces the lowest error between warped synthetic utterances 
and adaptation utterances. For simplicity, we will assume a 
single adaptation utterance given by the acoustic vector set 
{xt}t = 1…T and its corresponding text, from which the synthesis 
engine can determine the sequence of CD-HSMM states to be 
used. For clarity, we will assign an index to each state in order 
of appearance: {1, 2, … , M}. Since the iterative algorithm in 
section 3 requires a set of aligned vectors as input, the state 
durations must match those of the target utterance. For a more 
versatile adaptation, it is interesting to perform time-alignment 
automatically even when a segmentation of that reference 
utterance is not available. Therefore, in this work we use the 
synthesis models to obtain such segmentation via forced 
alignment. A Viterbi search is carried out to establish the 
correspondence between frames {1…T} and states {1…M} by 
determining the sequence {m1 … mT} that fulfils the continuity 
and left-to-right conditions (m1 = 1; mT = M; mt+1 = mt or 
mt + 1 for all t) and maximizes the following log-likelihood 
function: 
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where Xt is the result of appending dynamic features to xt, dt is 
the duration of state mt until frame t (it can be obtained 
recursively: dt = 1 if t = 1 or mt ≠ mt–1; dt = dt–1 + 1 elsewhere), 
N denotes the normal distribution, and 
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Note that (13) means calculating the probability that the 
duration of the current state is greater than it was at frame t 
according to the duration means μ(d) and variances σ(d)2 learnt 
during CD-HSMMs training. 

Once the state durations are known, ML parameter 
generation (9)–(11) can be applied to obtain a synthetic 
version of the adaptation material, {yt}t = 1…T, {xt} and {yt} 
being completely parallel. In these conditions, it would be 
straightforward to obtain the necessary VTLN factor α by 
means of the algorithm in section 2. The main problem of this 
approach is that high vocal tract length contrasts between the 
source (synthetic) voice and the target voice may result in 
inaccurate state durations and therefore inaccurate α. To avoid 
it, the following iterative algorithm is applied to jointly 
optimize α and the durations: 
- Step 1: initialize α as 0. 
- Step 2: for the current α, calculate a set of frequency-warped 

adaptation vectors {xt
(α)}, xt

(α) = Aαxt, where the involved 
matrix is given by expression (3). 

- Step 3: use the forced alignment method described above to 
determine the state durations using {xt

(α)} (not {xt}) as 
reference; then generate {yt} through expressions (9)–(11). 

- Step 4: calculate a new α using the iterative method in 
section 2, taking the adaptation vectors {xt} as source and 
the synthetic vectors {yt} as target (although this is the 
opposite direction to the desired one, it simplifies the 
calculations substantially). Note that the current {yt} 
depends on the current durations, which in turn depend on 
the current α (we avoid more specific notation for clarity). 

- Step 5: if the last update of α was insignificant, multiply α 
by -1 (this means inverting the warping function, thus 
making it suitable to transform the synthetic voice into the 
target voice) and exit. Otherwise, go back to step 2. 

Under the assumption that the state durations and the 
resulting set {yt} have converged together with the VTLN 
factor α, an additive cepstral correction term is calculated as a 
complement for VTLN: 
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The use of this additive term can be seen as as sort of long-
term average spectrum normalization. The final adaptation of 
the mean vectors {μm} and covariance matrices {Σm} at every 
state of the trained CD-HSMMs is carried out as follows: 
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where diag{…} denotes a block-diagonal matrix and (s), (Δ) 
and (ΔΔ) denote the sub-parts of the vectors/matrices related 
to static features, their 1st derivatives and their 2nd derivatives, 
respectively. 

Interestingly, we found the described method to perform 
better when the involved vectors are weighted by the local 
probability of voicing when calculating both α and b through 
expressions (6) and (14), respectively. This prevents long 
silences and unvoiced segments from biasing the results too 
much. In HMM-based speech synthesis, the probability of 
voicing at each state can be easily extracted from the weights 
of the multi-space distributions (MSD) used to model/generate 
the log f0 contour [14]. 

Finally, an average pitch modification factor is calculated 
by generating a synthetic log f0 contour according to the last 
instance of the state durations and comparing it with that of the 
adaptation utterance. In this case, adaptation is performed by 
summing the appropriate constant value to the static part of the 
mean vectors of the CD-MSD-HSMMs trained from log f0. 

5. Preliminary evaluation 
As discussed in [3], evaluating VTLN is not an easy task 
because the behavior of the method depends on the specific 
voices involved in the test. In addition, performing VTLN 
followed by long-term average cepstral correction implies 
modifying just a few characteristics of the source voice. 
Therefore, for arbitrary input voices and large amounts of data 
the proposed adaptation method cannot compete with more 
sophisticated methods such as the well known CSMAPLR 
[15]. On the other hand, we would also like to emphasize that 
these are just the preliminary steps towards the design of a 
better method inspired by the BLFW+AS voice conversion 
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method [5]. Taking all this into account, we have conducted a 
relatively simple perceptual test to show that (i) our method 
can effectively reduce the gap between the voice of a 
synthesizer and a given target voice and (ii) it can do it rapidly 
using only one reference utterance and its corresponding text. 

The text-to-speech (TTS) synthesis system used in our 
experiments, AhoTTS [16], includes a statistical engine based 
on HTS [17] and a Mel-cepstral vocoder based on a harmonics 
plus noise model [18]. The default voice of the system was 
trained from 2k utterances recorded from a female speaker in 
Castilian Spanish and digitized at 16 kHz sampling frequency. 
In previous informal listening tests we had found this voice to 
be quite suitable for VTLN-based transformations, even 
towards male voices. We recorded one short utterance (9 
words) from 11 different non-professional speakers (5 female 
plus 6 male speakers). Using them as target, we applied our 
adaptation method to transform the models of AhoTTS’s 
default voice and then we synthesized speech in all of these 
voices. Next, 15 volunteer listeners (half of them were speech 
processing experts) rated the following aspects on a 5-point 
scale: similarity between the default synthetic voice and the 
target natural voice, similarity between the adapted synthetic 
voice and the target natural voice, and relative quality of the 
adapted voice with respect to the default synthetic voice. As 
usual, the score indicating the lowest similarity/quality is 1 
and the highest score is 5. 

Table 1. Results of the perceptual test: MOS and 95% 
confidence interval. 

 Source-
target Sim. 

Adapted-
target Sim. 

Quality of 
adapted 

Intra-gender 1.40 ± 0.16 2.78 ± 0.25 4.12 ± 0.25 
Cross-gender 1.03 ± 0.04 2.63 ± 0.20 3.74 ± 0.22 
Total average 1.20 ± 0.08 2.69 ± 0.16 3.94 ± 0.17 

 
The mean opinion scores (MOSs) summarized in Table 1 

indicate that, despite the evident differences between source 
and target voices (~1.2 similarity MOS on a 1-to-5 scale) and 
the low amount of training material, the proposed method 
makes the adapted voice significantly closer to the target (~2.7 
similarity MOS). The quality loss due to the adaptation 
process is not particularly high (~4 relative quality MOS). 
Given the differences between intra-gender and cross-gender 
cases, we believe that this apparent 1-point quality gap is 
partially related to the naturalness of the voice that results 
from this particular type of adaptation rather than to the 
appearance of artifacts. Overall, taking into account the nature 
of the method and despite the absence of baseline methods in 
the listening test, these MOSs reveal that our research goes in 
the right direction and also that the method proposed in this 
preliminary work still needs to be improved in order to 
achieve more satisfactory similarity MOSs. 

6. Conclusions 
We have presented a new method to adapt the voice of an 

HMM-based synthesizer using a single unlabeled utterance 
from the target speaker and its corresponding text. Despite 
using a relatively simple transformation consisting of VTLN, 
long-term average cepstral correction and pitch shifting, the 
method succeeds at reducing the distance between adapted and 
target voices significantly. Future works will aim at improving 

the similarity scores achieved by the method through the use 
of class-dependent additive cepstral terms. 
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